

Daily Tutorial Sheet-1	JEE Advanced (Archive)
------------------------	------------------------

1. Electron Affinity

- **2.(B)** Hydration energy depends on the charge and radius of the ion. Greater the charge, greater is the hydration energy smaller the radius, greater is the hydration energy.
 - \therefore Hydration energy of $Mg^{2+} > Hydration$ energy of Na^+

3. (i)
$$O^{2-} > F^{-} > Na^{+} > Mg^{2+}$$
, (ii) $Na < Al < Mg < Si$, (iii) $N_{2} < O_{2} < F_{2} < Cl_{2}$

- (i) Mg^{2+}, O^{2-}, Na^+ and F^- are all isoelectronic, has 10 electrons each. Among isoelectronic species, the order of size is cation < neutral < anion. Also, between cations, higher the charge, smaller the size and between anions, greater the negative charge, larger the size. Therefore, the decreasing order of ionic radii: $O^{2-} > F^- > Na^+ > Mg^{2+}$
- (ii) First ionisation energy increases from left to right in a period. However, exception occur between group 2 and 13 and group 15 and 16 where trend is reversed on the grounds of stability of completely filled and completely half-filled orbitals. Therefore, Ionisation energy (1 st): Na < Al < Mg < Si
- $\label{eq:continuous} \begin{tabular}{ll} \textbf{(iii)} & If the atom are from same period, bond length is inversely proportional to bond order. In a group, bond length is related directly to atomic radius. Therefore, bond length $N_2 < O_2 < F_2 < Cl_2$ \\ \end{tabular}$

4. Electronegativity

Electronegativity = $\frac{I. E + E. A}{2}$ (According to mulliken scale)

5.(T) Size increases down the graph. Larger the size, more is the softness.

6. $I.E_1 Zn > Cu, I.E_2 Cu > Zn$

$$Zn = 3d^{10}4s^2$$
, $Cu = 3d^{10}4s^1$

The first ionization energy is greater for Zn but reverse true for 2nd ionization energy.

7. $Ca^{2+} < Ar < Cl^{-} < S^{2-}$

Size
$$Ca^{2+} < Ar < Cl^{-} < S^{2-}$$

- **8.(F)** Ionisation potential decreases down the graph but is not the only criteria for reducing power.
- $\begin{tabular}{ll} \textbf{9.(C)} & Electronegativity increases from left to right in a period and decreases from top to bottom in a group. \\ & Variation is more rapid in a group than in a period. Hence electronegativity: <math>Si < P < C < N$
- **10.(A)** In the same period, the atomic radii of the noble gas is greater, than that of the halogen.
- **11.(A)** First ionisation potential of nitrogen is greater than that of oxygen due to stable half filled valence subshell of nitrogen.
- **12.(A)** Ionisation energy increases from left to right in a period. However exception occurs in cases where ionisation would disrupt the stable half filled or fully filled subshells.

 Ionisation energy of group 2 > Ionisation energy of group 13

Solution | Chemistry 144 Periodic Properties

- **13.(ACD)** The long from of the periodic table does not help to predict the stable valency states of the elements.
- **14.(ABC)** Due to stable half filled valence subshell of nitrogen, its first ionization potential is slightly greater than that of oxygen.
- **15.(D)** For isoelectronic species, size decreases with increase in atomic number.